If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4=3t^2
We move all terms to the left:
4-(3t^2)=0
a = -3; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-3)·4
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*-3}=\frac{0-4\sqrt{3}}{-6} =-\frac{4\sqrt{3}}{-6} =-\frac{2\sqrt{3}}{-3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*-3}=\frac{0+4\sqrt{3}}{-6} =\frac{4\sqrt{3}}{-6} =\frac{2\sqrt{3}}{-3} $
| -2(3x-3)=-5(x+1) | | 7/x=1/5 | | h(1)=-16*1^2+96*1+880 | | 29b+27=8b | | -7x+14=-42 | | 4x-5=7x-22 | | 1x=40-21 | | 130=1/2h(8+5) | | 3/5(2m-10)=2/3m=10 | | 3(x+6)=0,5x-7 | | 18j-9j+9=8j-9 | | |x|+14=66 | | 3(7r-2)=21r+6 | | 5/6x-2x+1/3=1/3 | | X+(x*0.33)=115 | | 4*x-12=0 | | -2+8r-4r=18 | | 4.x-12=0 | | 5/6x-1=7x-4/3 | | 9x-17=7x-9 | | 12=3/y | | 0=4.9*t^2+8.6*t-30 | | -6=3x/4+12 | | x-30=100 | | 5-k=11 | | (5x/4)=1-(2/5)(x-(1/10)) | | 2x=52-x+-12 | | X+4=2x+2+x+2 | | 21t+2=11t+10 | | 1+5x=4x-3 | | .5x-2=20 | | 3x-0=x+8 |